p-group, metabelian, nilpotent (class 2), monomial
Aliases: C24.60C23, C23.576C24, C22.2612- 1+4, C22.3502+ 1+4, C4⋊C4⋊9D4, C2.40D42, C22⋊C4⋊13D4, C23.62(C2×D4), C23⋊2D4⋊37C2, C23⋊Q8⋊39C2, C2.86(D4⋊5D4), C2.43(Q8⋊5D4), C23.74(C4○D4), C23.8Q8⋊96C2, C23.Q8⋊50C2, C23.23D4⋊80C2, C23.10D4⋊74C2, (C2×C42).635C22, (C23×C4).446C22, (C22×C4).865C23, C22.385(C22×D4), C24.3C22⋊72C2, (C22×D4).217C22, (C22×Q8).174C22, C2.58(C22.32C24), C2.54(C22.29C24), C23.63C23⋊126C2, C2.C42.287C22, C2.8(C22.56C24), C2.39(C22.31C24), (C2×C4⋊D4)⋊32C2, (C2×C4).415(C2×D4), (C2×C22⋊Q8)⋊34C2, (C2×C4.4D4)⋊26C2, (C2×C4⋊C4).394C22, C22.441(C2×C4○D4), (C2×C22⋊C4).247C22, SmallGroup(128,1408)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.576C24
G = < a,b,c,d,e,f,g | a2=b2=c2=e2=f2=1, d2=g2=a, ab=ba, ac=ca, ede=ad=da, geg-1=ae=ea, af=fa, ag=ga, bc=cb, fdf=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef=ce=ec, cf=fc, cg=gc, gdg-1=abd, fg=gf >
Subgroups: 756 in 338 conjugacy classes, 104 normal (82 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×Q8, C24, C2.C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C4⋊D4, C22⋊Q8, C4.4D4, C23×C4, C22×D4, C22×Q8, C23.8Q8, C23.23D4, C23.63C23, C24.3C22, C23⋊2D4, C23⋊Q8, C23.10D4, C23.Q8, C2×C4⋊D4, C2×C22⋊Q8, C2×C4.4D4, C23.576C24
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22×D4, C2×C4○D4, 2+ 1+4, 2- 1+4, C22.29C24, C22.31C24, C22.32C24, D42, D4⋊5D4, Q8⋊5D4, C22.56C24, C23.576C24
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 11)(2 12)(3 9)(4 10)(5 35)(6 36)(7 33)(8 34)(13 41)(14 42)(15 43)(16 44)(17 50)(18 51)(19 52)(20 49)(21 46)(22 47)(23 48)(24 45)(25 60)(26 57)(27 58)(28 59)(29 56)(30 53)(31 54)(32 55)(37 62)(38 63)(39 64)(40 61)
(1 55)(2 56)(3 53)(4 54)(5 49)(6 50)(7 51)(8 52)(9 30)(10 31)(11 32)(12 29)(13 27)(14 28)(15 25)(16 26)(17 36)(18 33)(19 34)(20 35)(21 61)(22 62)(23 63)(24 64)(37 47)(38 48)(39 45)(40 46)(41 58)(42 59)(43 60)(44 57)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 2)(3 4)(5 52)(6 51)(7 50)(8 49)(9 10)(11 12)(13 44)(14 43)(15 42)(16 41)(17 33)(18 36)(19 35)(20 34)(21 37)(22 40)(23 39)(24 38)(25 59)(26 58)(27 57)(28 60)(29 32)(30 31)(45 63)(46 62)(47 61)(48 64)(53 54)(55 56)
(1 38)(2 64)(3 40)(4 62)(5 43)(6 16)(7 41)(8 14)(9 61)(10 37)(11 63)(12 39)(13 33)(15 35)(17 57)(18 27)(19 59)(20 25)(21 30)(22 54)(23 32)(24 56)(26 50)(28 52)(29 45)(31 47)(34 42)(36 44)(46 53)(48 55)(49 60)(51 58)
(1 16 3 14)(2 43 4 41)(5 62 7 64)(6 40 8 38)(9 42 11 44)(10 13 12 15)(17 21 19 23)(18 45 20 47)(22 51 24 49)(25 31 27 29)(26 53 28 55)(30 59 32 57)(33 39 35 37)(34 63 36 61)(46 52 48 50)(54 58 56 60)
G:=sub<Sym(64)| (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,11)(2,12)(3,9)(4,10)(5,35)(6,36)(7,33)(8,34)(13,41)(14,42)(15,43)(16,44)(17,50)(18,51)(19,52)(20,49)(21,46)(22,47)(23,48)(24,45)(25,60)(26,57)(27,58)(28,59)(29,56)(30,53)(31,54)(32,55)(37,62)(38,63)(39,64)(40,61), (1,55)(2,56)(3,53)(4,54)(5,49)(6,50)(7,51)(8,52)(9,30)(10,31)(11,32)(12,29)(13,27)(14,28)(15,25)(16,26)(17,36)(18,33)(19,34)(20,35)(21,61)(22,62)(23,63)(24,64)(37,47)(38,48)(39,45)(40,46)(41,58)(42,59)(43,60)(44,57), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,2)(3,4)(5,52)(6,51)(7,50)(8,49)(9,10)(11,12)(13,44)(14,43)(15,42)(16,41)(17,33)(18,36)(19,35)(20,34)(21,37)(22,40)(23,39)(24,38)(25,59)(26,58)(27,57)(28,60)(29,32)(30,31)(45,63)(46,62)(47,61)(48,64)(53,54)(55,56), (1,38)(2,64)(3,40)(4,62)(5,43)(6,16)(7,41)(8,14)(9,61)(10,37)(11,63)(12,39)(13,33)(15,35)(17,57)(18,27)(19,59)(20,25)(21,30)(22,54)(23,32)(24,56)(26,50)(28,52)(29,45)(31,47)(34,42)(36,44)(46,53)(48,55)(49,60)(51,58), (1,16,3,14)(2,43,4,41)(5,62,7,64)(6,40,8,38)(9,42,11,44)(10,13,12,15)(17,21,19,23)(18,45,20,47)(22,51,24,49)(25,31,27,29)(26,53,28,55)(30,59,32,57)(33,39,35,37)(34,63,36,61)(46,52,48,50)(54,58,56,60)>;
G:=Group( (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,11)(2,12)(3,9)(4,10)(5,35)(6,36)(7,33)(8,34)(13,41)(14,42)(15,43)(16,44)(17,50)(18,51)(19,52)(20,49)(21,46)(22,47)(23,48)(24,45)(25,60)(26,57)(27,58)(28,59)(29,56)(30,53)(31,54)(32,55)(37,62)(38,63)(39,64)(40,61), (1,55)(2,56)(3,53)(4,54)(5,49)(6,50)(7,51)(8,52)(9,30)(10,31)(11,32)(12,29)(13,27)(14,28)(15,25)(16,26)(17,36)(18,33)(19,34)(20,35)(21,61)(22,62)(23,63)(24,64)(37,47)(38,48)(39,45)(40,46)(41,58)(42,59)(43,60)(44,57), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,2)(3,4)(5,52)(6,51)(7,50)(8,49)(9,10)(11,12)(13,44)(14,43)(15,42)(16,41)(17,33)(18,36)(19,35)(20,34)(21,37)(22,40)(23,39)(24,38)(25,59)(26,58)(27,57)(28,60)(29,32)(30,31)(45,63)(46,62)(47,61)(48,64)(53,54)(55,56), (1,38)(2,64)(3,40)(4,62)(5,43)(6,16)(7,41)(8,14)(9,61)(10,37)(11,63)(12,39)(13,33)(15,35)(17,57)(18,27)(19,59)(20,25)(21,30)(22,54)(23,32)(24,56)(26,50)(28,52)(29,45)(31,47)(34,42)(36,44)(46,53)(48,55)(49,60)(51,58), (1,16,3,14)(2,43,4,41)(5,62,7,64)(6,40,8,38)(9,42,11,44)(10,13,12,15)(17,21,19,23)(18,45,20,47)(22,51,24,49)(25,31,27,29)(26,53,28,55)(30,59,32,57)(33,39,35,37)(34,63,36,61)(46,52,48,50)(54,58,56,60) );
G=PermutationGroup([[(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,11),(2,12),(3,9),(4,10),(5,35),(6,36),(7,33),(8,34),(13,41),(14,42),(15,43),(16,44),(17,50),(18,51),(19,52),(20,49),(21,46),(22,47),(23,48),(24,45),(25,60),(26,57),(27,58),(28,59),(29,56),(30,53),(31,54),(32,55),(37,62),(38,63),(39,64),(40,61)], [(1,55),(2,56),(3,53),(4,54),(5,49),(6,50),(7,51),(8,52),(9,30),(10,31),(11,32),(12,29),(13,27),(14,28),(15,25),(16,26),(17,36),(18,33),(19,34),(20,35),(21,61),(22,62),(23,63),(24,64),(37,47),(38,48),(39,45),(40,46),(41,58),(42,59),(43,60),(44,57)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,2),(3,4),(5,52),(6,51),(7,50),(8,49),(9,10),(11,12),(13,44),(14,43),(15,42),(16,41),(17,33),(18,36),(19,35),(20,34),(21,37),(22,40),(23,39),(24,38),(25,59),(26,58),(27,57),(28,60),(29,32),(30,31),(45,63),(46,62),(47,61),(48,64),(53,54),(55,56)], [(1,38),(2,64),(3,40),(4,62),(5,43),(6,16),(7,41),(8,14),(9,61),(10,37),(11,63),(12,39),(13,33),(15,35),(17,57),(18,27),(19,59),(20,25),(21,30),(22,54),(23,32),(24,56),(26,50),(28,52),(29,45),(31,47),(34,42),(36,44),(46,53),(48,55),(49,60),(51,58)], [(1,16,3,14),(2,43,4,41),(5,62,7,64),(6,40,8,38),(9,42,11,44),(10,13,12,15),(17,21,19,23),(18,45,20,47),(22,51,24,49),(25,31,27,29),(26,53,28,55),(30,59,32,57),(33,39,35,37),(34,63,36,61),(46,52,48,50),(54,58,56,60)]])
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 4A | ··· | 4N | 4O | 4P | 4Q | 4R |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 4 | 4 | 8 | 8 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | C4○D4 | 2+ 1+4 | 2- 1+4 |
kernel | C23.576C24 | C23.8Q8 | C23.23D4 | C23.63C23 | C24.3C22 | C23⋊2D4 | C23⋊Q8 | C23.10D4 | C23.Q8 | C2×C4⋊D4 | C2×C22⋊Q8 | C2×C4.4D4 | C22⋊C4 | C4⋊C4 | C23 | C22 | C22 |
# reps | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 4 | 4 | 4 | 3 | 1 |
Matrix representation of C23.576C24 ►in GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 2 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 4 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 2 |
0 | 0 | 0 | 0 | 1 | 3 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 3 |
0 | 0 | 0 | 0 | 4 | 2 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,4,0,0,0,0,0,0,0,4,2,0,0,0,0,0,1],[1,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,4,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,2,1,0,0,0,0,2,3],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,0,2,0,0,0,0,0,0,3,4,0,0,0,0,3,2] >;
C23.576C24 in GAP, Magma, Sage, TeX
C_2^3._{576}C_2^4
% in TeX
G:=Group("C2^3.576C2^4");
// GroupNames label
G:=SmallGroup(128,1408);
// by ID
G=gap.SmallGroup(128,1408);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,112,253,758,723,1571,346,80]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=e^2=f^2=1,d^2=g^2=a,a*b=b*a,a*c=c*a,e*d*e=a*d=d*a,g*e*g^-1=a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f=c*e=e*c,c*f=f*c,c*g=g*c,g*d*g^-1=a*b*d,f*g=g*f>;
// generators/relations